ChatGPT渗入到内容行业后,是否会造成剽窃、作弊成灾?会扼杀人类的内容创造力吗?

我的想法是剽窃、作弊成灾是会的,但扼杀人类的内容创造力是不会的。 首先人工智能模型造成剽窃、作弊的现象是近几年才出现的新情况,这也是模型水平进步的一个表现。而且,这种模型导致的剽窃和作弊相比于原来的形式还有比较明显的差别。要理解这件事情,还需要稍微了解一下这些模型的训练方法。 以ChatGPT为例,它最重要的一个环节是语言模型的预训练。它所依赖的语言模型是来自OpenAI的GPT-3.5。以他的前身GPT3来说,训练这个模型的数据来源如下 来自https://en.wikipedia.org/wiki/GPT-3#GPT-3.5 从表里可以看到,即使是让普通人觉得已经无所不包的维基百科只占到了训练数据的3%,可见训练一个顶级的语言模型需要多少数据。训练的过程有点像填字游戏,让模型看一小段文本,让它猜测后面接着的文本是什么。是不是有点像人类的背诵? 而这么巨大的训练语料就意味着这个模型可能阅读过这个世界上相当大比例的文本,不管是书籍、论文还是博客文章,甚至是代码片段,这也是为什么ChatGPT可以有如此令人惊艳效果的原因。它看过的这些文本,最终是形成了一个巨大的概率分布,例如看到“世界”,它会知道后面也许会跟着“杯”或者“地图”,它们有着不同的概率。 所以这种模型的剽窃和作弊是隐性且抽象的,需要人类用问题把模型的知识“钩”出来。虽然稍微不一样的钩子就有可能从模型钩出很不一样的结果,但由于这写结果本质上都符合模型训练时语料的概率分布,所以很有可能就会触发剽窃和抄袭。这确实是一个两难的问题,如果没有这海量的训练数据,就没有令人惊艳的模型,但这么大量的数据要把版权问题搞得清清爽爽也绝不是一件易事。 但对人类创造力的扼杀的担心我觉得大可不必。首先,模型暂时还没有实时进化的能力,ChatGPT的训练数据停留在2021年,它并不知道2022年底中国会突然放开防疫政策,那以此为题材的创作显然与他无缘。 其次,真正的创造欲望和创造力哪会因为创作之后会有人剽窃就减弱?那是一种使命感,是不吐不快的感觉。 大家都知道保护知识产权有利于激发社会创新创造,但近几十年来的开源运动也证明了这不是唯一的路径。在人人为我我为人人的开源软件世界,这种开放反而极大地促进了技术的进步和传播。说不定以后在AI模型领域也会有这样的运动,人们贡献出自己产生的语料供模型学习,然后用适当的license系统保证产出的模型可以被合理、公平地被使用。 我在知乎的原回答

January 31, 2023 · 1 min · Yuanhao

以 ChatGPT 为代表的「大模型」会是多大的技术革命?如果要发生技术革命需要具备哪些条件?

作为一个近几年语言模型大潮的经历者谈一谈自己的看法。 ChatGPT is ’not particularly innovative,’ and ’nothing revolutionary’, says Meta’s chief AI scientist 上面一句话是Yann Lecun说的,虽然被网友群嘲柠檬精,但我是比较认同的。我感觉”大模型“确实是一个革命,但ChatGPT更适合作为这场革命阶段性胜利的一个里程碑。而其实这场革命的火种早就已经播下了。 这场革命如果往早了说,我觉得可以追溯到连接主义的诞生。 连接主义(connectionism),又称为仿生学派或生理学派,其主要原理为神经网络及神经网络间的连接机制与学习算法。 这一学派相信神经网络是实现人工智能的方式,上世纪40年代就出现了。但它的发展历程很曲折,经历过很多高光时刻,也多次陷入低谷 我们先来看一组数据: 人脑是一个极其复杂的器官,由大约1000亿个神经元、大致相同数量的非神经元细胞和数万亿个神经连接组成。 如果你希望要用神经网络来实现人工智能,自然的想法就是神经网络的规模要跟人类大脑相当。也就是说足够”大“会是一个非常朴素的需求,他并不是最近才出现的。 前几天横空出世的AI 爆款产品ChatGPT,可以聊天、写代码、解答难题、写小说,其技术底座正是GPT3.5 大模型,参数量多达1750 亿个。 从上面的数据可以看出,目前牛逼的神经网络参数量已经跟人脑的神经元数量相当了。但了解神经网络的朋友应该会知道,上面所说的GPT3.5的参数量实际上是要跟人脑中的神经连接数进行类比,而不是神经元个数。也就是说目前最牛逼的神经网络容量和我们的脑容量还有数量级的差距。 在当下,大部分人都会相信我们堆更大的模型用更多的数据还能够提高神经网络的能力。于是短短几年间,从BERT的1M参数已经进步到GPT3.5的175B参数。 但在若干年前,这个事情还不是这样,人们想大也大不起来。因为没有找到合适的结构,也没有合适的训练方法,可能硬件也不够给力来让神经网络越大越好这件事成为现实。直到Transformers模型和基于掩码的非监督训练方式出现,事情才发生转机。所以往近了说,这场革命应该归功于这两件事,ChatGPT的祖宗GPT在2018年就出现了。 要说这革命有多大,我感觉目前的结果还是不如前面第一和第二次工业革命大。那两次都是极大地改变了人类的生产方式,丰富了人类的物质生活,实现了例如探索宇宙这样之前无法办到的事情。现在的ChatGPT相比起来还差一些。但是AI4Science领域也有很多激动人心的结果,未来还有很大的潜力。 我在知乎的原回答

January 30, 2023 · 1 min · Yuanhao

目前ChatGPT 已应用到论文写作、剧本创作、媒体内容生产,是解放生产力的机会还是被AI支配的开始?

我感觉问题中的两个选项并不是互斥的,而且所谓被AI支配的开始甚至都不是一个合格的选项,为什么这个开始是ChatGPT,不是计算机的发明,甚至是二极管的发明呢?但是我认为说ChatGPT是“解放生产力的机会”还是比较靠谱的。 它解放生产力的能力已经被大量的报道了,以剧本创作为例,假如你有一个绝妙的故事创意,你可以让ChatGPT快速地帮你产生好几个版本的剧本。这种机器辅助的模式可以极大地增加内容生产的效率。 但ChatGPT并不是一个可以自主创作的人工智能,它是一个以对话机器人的形式呈现的算法模型。就像是一个从不主动说话,但几乎有问必答,且学富五车的人。要把它的知识或者创造力激发出来,需要有适合它的问题。而我一直觉得提问题是一个比回答问题更有难度、更体现创意的事情。还是以前面的剧本创作为例,正是因为你有了一个绝妙的故事创意,ChatGPT才能在此基础上写出一个好的剧本,你在这个创作中的贡献是无可替代的。 以此展开,人类创作者还有很多能力是ChatGPT目前不具有的,例如ChatGPT没有情绪。他不会因失恋而难过,也没法因为看到一个漂亮的风景而开心。但很多时候,情绪才是创作的源头。 也就是说,ChatGPT是一个次时代的工具,但创作的主动权,仍然在使用它的人类手上。或者可以说,ChatGPT只会作,而不会创。在内容生产领域如果说真的会被AI支配,我认为应该是被善于使用这种次时代工具的人支配。这也是我们大家可以在其中寻找的机会。如果一个人能够快速获取大量优质的prompt(也就是给ChatGPT的问题),那确实可以在内容生产这个行当里获得远高于一般人的经济回报。但我认为,在内容或者说创意行业,几乎不可能有个体或组织可以达到“支配”行业的程度。这是一个非常分散、个性化的行当,受众的喜好五花八门,萝卜青菜都有人爱。即使好莱坞再强,世界上的其他地方还是可以拍出叫好叫座的电影。 反过来看,今天ChatGPT可以做的事情有多少是真正的创作呢?回答一些答案明确的问题?完成一些格式相对固定的文案?写一个常见功能代码?AI是面镜子,可以让人类反思到底哪些工作是真正的创意工作。当基于统计的模型(ChatGPT也是基于统计的模型)可以把一个问题解决得差不离,那它的创意属性基本上就消失殆尽了。 我在知乎的原回答

January 30, 2023 · 1 min · Yuanhao

也聊一下ChatGPT

最近ChatGPT火了,而且火出圈了。好多不是做技术的朋友都开始关注甚至转发相关文章。从广为流传的一些例子看,ChatGPT确实做出了让大家眼前一亮的效果。聊天机器人搞了这么些年,也终于有了一个让大家都比较认可的产品。 {: .align-center style=“width:80%”} ChatGPT的结果令人惊艳 {: .align-caption style=“text-align:center;font-size:smaller”} 小迷思 前几天几个小伙伴聊天,说起ChatGPT和OpenAI,纷纷感叹为什么国内没有这样的创新公司和突破性产品涌现。几个大厂的研究院,比如阿里达摩院、字节AI Lab虽然成果也很多,但跟deepmind、OpenAI比起来差距还是很大。其实ChatGPT背后的东西并不是有多难,但为什么做出来的是他们? 今天在知乎上发现也有类似的问题,还挺火的。不少回答都从大环境的角度分析,有说我们还穷的,有说国内资源和人才不匹配的。这些固然对,但作为个体我们也可以从自己身上找找原因。前几天看到一个做AI架构的大佬在朋友圈感叹,18年就在某大厂实现了500块GPU并行训练transformer,但大家都不知道这东西能干嘛。所以有的时候并不全是资源不到位的问题。我不禁想起了马老师“因为相信,所以看见”的观点,我感觉就是差在这个境界上。从学校毕业五年多了,我感觉这也是自己目前比较大的一个问题,我们有把事情做好的能力,但却缺少真正相信且原意长期坚持的东西。 ChatGPT背后的技术 还是聊回技术。ChatGPT还没有公开的论文,根据OpenAI的博客,基本上使用的技术和他们在今年早些时候公布的InstructGPT差不多。 We trained this model using Reinforcement Learning from Human Feedback (RLHF), using the same methods as InstructGPT, but with slight differences in the data collection setup. {: .align-center style=“width:80%”} ChatGPT训练流程 {: .align-caption style=“text-align:center;font-size:smaller”} 上面是ChatGPT博客上的训练流程图,下面是早先InstructGPT论文里的训练流程图,嗯,可以说是一模一样,比较大的差别是基础语言模型从GPT3升级到了GPT3.5。 {: .align-center style=“width:80%”} InstructGPT训练流程 {: .align-caption style=“text-align:center;font-size:smaller”} InstructGPT的介绍还有图例,更容易讲清楚ChatGPT是如何训练的。这个模型的训练分为3个步骤: 从预训练语言模型出发,用标注者产生的数据fine tune一个根据提示(prompt)生成答案的模型,这一步称为SFT 用上一步训练的模型生成大量的答案,每一个prompt都生成多组,并让标注者对这些答案进行排序。用这样获得的数据训练一个奖励模型(Reward Model,RM)。这个模型会作为后续强化学习环节的世界模型。 强化学习训练。这一步有点左右互搏的意思,用RM模型作为世界模型,SFT之后的生成模型做agent,进行训练,让生成模型尽可能地在RM模型那里拿到高分。这一步使用的算法也来自OpenAI,为2017年发布的PPO算法。 {: .align-center style=“width:80%”} 强化学习基本流程 {: .align-caption style=“text-align:center;font-size:smaller”} 我对强化学习并不熟悉,只是稍微看了下PPO的介绍,这个算法的目标函数可以用下面的公式来概括,这个目标函数包含了三个部分,第一部分是标准的强化学习目标,即在reward model那得高分;第二部分是PPO的创新点,即KL惩罚,目的是让强化学习的每一步都不要更新太多(新模型和老模型的KL散度要小);第三部分是针对语言模型精调新加的,为了防止语言模型在精调的时候退化,他们在精调时把语言模型loss也加了进来。三个部分通过两个超参数β和γ进行调节。...

December 10, 2022 · 1 min · Yuanhao

能跟你聊DOTA的神经对话模型:Meena&DialoGPT

提到对话机器人或者聊天机器人,国内的朋友可能先想到的是微软小冰或者苹果Siri。这两个机器人由于需要完成一些功能性的任务,都采用了模块化设计,虽然神经网络在其中起到了重要作用,但输出结果并不是从输入语句“端到端”产生的。而且用过的朋友都知道,他们的聊天能力并不是很令人满意。 今天介绍的神经对话模型则是一步到位,将对话历史作为输入,让模型直接生成下一轮的回复。学术一点说,神经对话模型本质上是在解决文本生成的问题。相比于很多聊天机器人(包括我们的晴天一号)目前使用的语料库+检索算法的架构,生成式(包括改写等等)算法能给对话带来更多的可能性和趣味性。最近,得益于大规模预训练语言模型,文本生成任务得到了长足的发展。本文的主角就代表了目前神经对话模型的最高水平,分别是19年十一月由微软发布的DialoGPT和20年一月谷歌发布的Meena。 在开始正文之前,先展示一段机器人生成的对话,让大家对技术现状有个直观感受。 模型 两篇论文都没有在模型方面有什么重大的创新,他们使用的都是如下图所示基于Transformer的seq2seq模型。这里大致介绍一下所谓seq2seq模型的工作原理。每生成一个单词的过程如下:将对话的历史信息输入进编码器(左下角inputs),模型已经生成的当前轮结果输入解码器(右下角outputs,没错,outputs是也用来input的~),然后模型将会综合两者信息输出它预测的下一个词(上方output)。而生成一句完整的回复只需要将刚才新生成的词拼接到当前轮已有结果的后面(图中shifted right的含义),重复上述过程直到模型输出句子结束符。 DialoGPT采用的是标准的GPT-2模型,也就是上图模型的加大号版本;而Meena采用的是去年Google通过神经网络结构搜索(NAS)方法得到的进化版transformer模型(Evolved Transformer)。Meena由1个ET编码器和13个ET解码器构成,ET解码器和标准Transformer解码器的对比如下图所示,两者似乎差别不大,论文注脚说一个ET Decoder Block大概是标准Transformer Decoder Block的两倍深。 虽然Meena和DialoGPT都是Transformer模块搭建的模型,但两者规模的差别非常巨大。Meena使用了极其巨大的隐层规模(2560 hidden size,32 attention heads),总参数量达到了惊人的2.6B。相比之下微软的模型就克制很多,最大规模的DialoGPT参数量为762M,表现最好的模型参数量是345M。作为参照,目前地表最强——google的T5模型参数量是11B,BERT large则只有340M。 数据 数据则是两篇论文提升performance的重中之重,特别是对于模型大小比较正常的DialoGPT来说。 DialoGPT论文里明确说数据是从Reddit上搞下来的。通过解析Reddit上的讨论帖,可以获得“树状”的对话数据,然后把每一条从根节点到叶节点的路径拎出来都能获得一个完整的对话。假设一个对话共说了K轮,每次取出当前轮作为标签,之前轮的对话作为输入,总共可以获得K-1条训练数据。Meena的数据来自于public domain social media conversations,他也是从树状对话中获得的数据,我猜测这些对话的形式应该和reddit这种论坛比较相似。 他们的数据量都是非常之巨大的,DialoGPT的总session数是147116725(147M),总词数是1.8B。再来看Meena,他们的总训练数据量是867M,总词数是40B,存成文本文件是341GB。这里可以对比一下之前的模型,BERT的训练数据是16GB,GPT-2的训练数据是40GB,曾经的数据狂魔Roberta是160GB。谷歌再次定义了什么叫大力出奇迹。我在维基百科看到人的平均阅读速度是每分钟200词,按这样的速度1 Billion单词需要一个人不眠不休阅读大概347天。从这个角度看,目前的训练数据量似乎又显得比较合理了。 两篇论文都提到要对数据做非常大刀阔斧的清洗,例如删掉太长或太短的、重复词语多的、含有URL的、不含有常见词的等等。总之,要保证数据质量足够高。 顺便提一下,DialoGPT尝试了从预训练模型迁移和从对话数据集从头训练两种方式。结果是迁移的表现明显好于从头训练。我认为这个现象非常的合理,使用预训练模型就好比教一个学过好几年语文的小朋友在网上聊天,这应该好过一个从小就只通过网络聊天学语文的小朋友。但Meena好像采用的是从头训练的模式,也许他们预训练一把能得到更好的结果。 由于使用了极大的模型和数据集,两个模型都是使用了豪华的硬件来进行训练。DialoGPT使用16个V100,而Meena则使用了2048个TPU v3核训练了30天。512个v2 TPU组成的POD三年协议价是12万美元一个月,v3应该更贵,所以你如果想复现这个模型,至少要花费48万美元。有钱真好:) 解码方式 解码是生成式任务里很重要的一个部分。因为正如前面介绍的,生成模型在推理时每一个时间步只会生成下一个词,而且后面的结果会依赖前面的结果,所以就需要一个好的解码策略来保证这一个个token最后能组成高质量的句子。去年有不少关于解码的工作,希望让机器人产生更有意义、有个性的回复。 DialoGPT没有采用什么独特的解码方式,而是使用了常见的Beam Search(集束搜索),只在最后用了一个较为新颖的重排序算法来从集束搜索得到的TOP K个结果中选出最佳的那个。在排序时,他们用一个训练好的“反向模型”来由生成的回复倒推输入。选用使输入语句概率最大的那个输出作为最终的输出。由于采用了Beam Search,它的解码过程应该是比较耗时的。 Meena比较有意思,作者们表示由于模型的Perplexity(困惑度)够低,完全不需要使用集束搜索。而是采用非常简洁的采样+重排就可以得到好的句子。 困惑度p可以理解为,如果每个时间步都根据语言模型计算的概率分布随机挑词,那么平均情况下,挑多少个词才能挑到正确的那个。 –知乎用户TimsonShi 所谓采样,就是在每一步都根据输出层得到的概率分布,随机选一个输出token,直到得出一个完整的句子。重复采用过程N次,得能到N个句子,最后将这N句话根据归一化后的句子概率排序,选出最优的。需要注意的是他们的输出层并不是对Vocabulary的简单Softmax,而是像知识蒸馏里一样增加了采样温度,即 $$p_i=\frac{\exp(z_j/T)}{\sum_j{\exp(z_j/T)}}$$ 作者们发现T的大小会影响生成结果。T小的时候,倾向于使用常规词汇,而T大的时候倾向于使用与上下文相关的词汇。论文使用的T为0.88,N为20。他们的结果显示这种采样的效果相比于集束搜索确实有很大的改进。下面一个是集束搜索的结果,另一个是采样,采样很好地避免了集束搜索生成结果丰富性差的弊端。 能得到这么好的结果有一个重要前提,就是模型的困惑度也就是perplexity够低。Meena的困惑度有多低呢,它是10.2,相比较之下DialoGPT的困惑度大约是15。 评价指标与结果 对评价指标的选择,两篇论文有很多共同点。他们都已经从BLEU这种考量词级别重合度的离散客观指标进化到了直接跟对话质量相关的抽象指标。从这一点也可以感觉出这个领域已经进入了相对成熟的阶段。DialoGPT使用人工评价的方式,评价模型的relevance,informativeness和how human-like。而Meena则用综合sensibleness和specificity的称为SSA的指标对机器人进行评价。所谓SSA就是对sensibleness和specificity的简单平均,A对应就是average。 Sensibleness我认为基本对应relevance,是指机器人能否得出符合上下文的有意义回答。但有意义是不够的,正如文章所说,一个只会回答“I don’t know”这类万金油句子的机器人说的话也是符合上下文的,但其实并不好。 Specificity对应infomativeness,是另一个维度,它评估机器人是否能给出有具体信息的答案。例如当人问”你喜欢电影吗”的时候你可以回答“我不知道/这很难说”,但一个更令人满意的回答可能是”当然,我特别喜欢科幻电影”。 我们来看一下Meena论文里的结果,因为他们为了比较,在相同的评测体系下把DialoGPT也测了。在Meena论文的评价指标下Meena的水平相当高,人类的SSA大概是0.82,Meena是0.78,已经相当接近。其他的对手在Meena面前基本抬不起头来,DialoGPT 0.51,Cleverbot 0.44。他们还评估了小冰和Mitsuku这两个著名的模块化机器人(非端到端的神经对话模型),SSA分别是0.36和0.56。文中还特别提到小冰的Specificity很差,只有0.19,这和我的使用感受是一致的。小冰感觉总是在扯淡,很难说出有意义的东西来。 SSA体系虽好,但完全依赖人工评价。Meena论文还评估了perplexity和SSA的相关度。结果如上图所示,横坐标是困惑度,纵坐标是SSA,Perplexity和SSA呈现非常明显的负相关关系,相关度大概是0.94。这就是说在训练模型的时候只需要评估混乱度基本就能知道最终的效果。这个结论我觉得非常重要,它无疑给广大神经对话模型研究人员带来了一个福音,毕竟人工评价实在太麻烦也太贵了。这下好了,以后大家奔着降低perplexity去就好了。 对话样例 在这一小节再放几张对话小样,从图中可以看出,这些模型的表现都很好,回答不仅流畅还符合一些常识。当然,我们在前面的文章里也讲过,这种隐含知识不太好控制。但只要语料够优秀,效果看起来是非常棒的。 后记 DialoGPT去年年底就发布了,而且微软大方地提供了预训练好的模型,他们也成为了这个领域当时的SOTA,但没想到这么快就被谷歌超越了。今年初看到谷歌连续放出Meena和REALM的时候还是蛮激动的,一个在类人闲聊上获得突破,另一个大幅提高了外挂知识库的利用水平。Twitter上针对这两篇论文也充满了乐观的论调,甚至有人预测2021年我们就能看到AGI了。这两年的技术发展确实让我们对文本数据的利用水平有了质的飞越,虽然不知道AGI如何,中文房间我感觉很快就会造好了。 另外也感慨Quoc V. Le带领的团队最近势头真猛。谷歌海量算力给了他们无限的空间,已经有在CV(例如去年的EfficientNet已经红遍Kaggle社区了)、NLP等领域遍地开花之势。如果中文房间真的盖好了,门牌上应该写的是1600 Amphitheatre Parkway, Mountain View, CA, U.S.吧。 参考阅读 DialoGPT: http://arxiv....

March 2, 2020 · 1 min · Yuanhao